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TABLE I. The formation rate constants of the Lnedta com- 

plexes and the k$ values. 
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k (M-’ s-’ ) Nd Gd Er Y 

10’ X kI;“y 2.1 3.0 1.8 0.9 

lo6 X 

key 

1.1 1.1 0.54 0.18 

k,“% 0.35 0.28 0.22 0.14 

of the reaction taking place by the direct attack 
of the Ln3+ ions on the protonated complex CeHedta 
has some importance only in the reaction with Y3+ 

(k&v = 200 w’ s-i). The rate constants obtained 
are listed in Table I. 

If the formation of complexes takes place by the 
Eigen-mechanisms, the second-order rate constants 
can be expressed as the product of the water- 
exchange rate constant of the metal ion and the outer 
sphere association constant K,, of the ions: kEv = 
kzz” X K,. The water-exchange rate constants 
of the Ln3+*aq ions are quite uncertain but their 
order of magnitude is about 10’ [6]. A more 
accurate value is known for the Gd3+*aq, kGT” = 
10.6 X 10’ s-i [8]. Taking into account the value 
kpy = 3 X lOa K’ s-’ (Table I) the association 
constant K, can be calculated as K,, = 0.28 M-‘. 
For 3+ and 3- ions the predicted K,, value is about 
100, that is much higher [9] . This suggests that the 
formation rate constants obtained are too low to 
assume the rate determining role of the water- 
exchange from the first coordination sphere. It seems 
more probable that the rate controlling step in the 
reaction between the Ln3+ ion and the monoproto- 
nated Hedta3- ligand is the ring closure because one 
of the iminodiacetate groups of the ligand is deproto- 
nated. The key values are about 2 orders of magni- 
tude lower than the kH”y values which can be inter- 
preted assuming a slower, rate controlling proton 
transfer step (or deprotonation) making possible 
the coordination of a deprotonated iminodiacetate 
group. 
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Transition Elements 
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The dithiooxalate anion, S&O:-, has been prev- 
iously shown to give low dimensional compounds, 
such as: 

MM’(SzCz02)2 with 
M = Ca, Ba, Zn, Mn(I1) 

M’ = Ni(II), Pd(II), Pt(II), Cu(II) 

A particular interest has been afforded to the com- 
pound with M = Mn, M’ = Cu, because of its one- 
dimensional structure constituted of ordered 
extended chains, -Mn-L-Cu-L-Mn- (L = 
SzC202); and moreover because of its very interesting 
magnetic properties. 

The substitution of lanthanide elements (Ln(II1)) 
to the metal M, led to a new family characterized by 
a structural entity: 

i.e. a neutral centrosymmetric heteropentanuclear 
unit. 

This family has been particularly studied for M’ = 
Ni, Solvent = HzO, and Ln(II1) = La, Ce, Nd, Sm, Eu, 
Gd, Y, Dy, Er, Yb. Within this series a modification 
of the lanthanide environment occurs between Dy 
and Er. The coordination polyhedron is a tricapped 
trigonal prism (CN = 9, n = 5) for the bulkiest lantha- 
nides while it is only a bicapped trigonal prism (CN = 
8, n = 4) for the other lanthanides. The loss of one 
water molecule in the coordination sphere of the 
lanthanide can be attributed to steric effects in rela- 
tion with the decrease of the lanthanide radius. The 
CN modification induces a rearrangement of the 
ligand (02C2S2) around the lanthanide, and a change 
of structure. Bulkiest lanthanides, up to Dy, crystal- 
lize in the monoclinic system (P2,/c) and their 
lattice looks like a channels structure with inserted 
water molecules within the channels; while the less 
bulky lanthanides crystallize in the triclinic system 
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(Pi) with a lattice comparable to a pseudo-lamelar 
structure, intercalated water molecules occupying the 
interlayer spaces. 

The substitution of Pd, Pt, Cu to Ni (with Ln = 
Eu) gives rise to isostructural compounds. 

Change of solvent (Solvent = (CHa)2SO) does not 
modify the geometry of the neutral centrosym- 
metric heteropentanuclear entity, dmso molecules 
substituting to water molecules. Compounds 
obtained with M’ = Ni,_Ln = Ce, Eu, Er crystallize 
in the triclinic system (Pl), with CN = 9, n = 5. 
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Complexes [U02AC&HaCON(CHa)2]2, [UOz- 
(C6H,COO)*2(CHa)~S02] and [UOaACa*l SCO- 
(NH,),] were obtained by the interaction of the 
aquadiacidouranyl complexes with the neutral 
ligands. 

Single crystal X-ray diffraction studies show that 
[U02Ac2CHaCON(CH3)2], has dimeric structure and 
uranyl ion here is pentacoordinated. Crystal struc- 
ture of the [UOz(C,sHsC00)2*2(CHa)2SO)z] is 
built of monomeric complexes where uranyl ion is 
hexacoordinated, and structure of the [U02Ac2* 
lSCO(NH&] is formed by the isolated complex 
[U02Ac2*3CO(NH2)2]’ cations and [UOzAc3]- 
anions. Complex [UOaPr. 1 .SCO(NH,),] is built 
in the same way, uranyl ions are penta- and hexa- 
coordinated. The uranyl complex with dicarboxylic 
succinic acid and DMSO [UOzCOOCHzCH,COO* 
(CH3)2SO] is built of chains where each acidoligand 
is bound in a bidentate way to one pentacoordinated 
uranyl ion, forming 4-membered cycle, and in a 
monodentate way to two other pentacoordinated 
uranyl ions. The crystal structure of the NH4[UOz- 
Prs] is built of isolated complexes, each bidentate 
propionate ion forms a 4membered cycle. The 
growth of the chains of monocarboxylic acids leads 
to predominance of the isolated forms of uranyl 
complexes. 
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Conductance measurements by Spedding ef al. 

[l] were obtained with halide solutions at pH e 
6.4 without taking into account hydrolysis of M3+ 
ions: 

w<H) 

3 X- t Ln3+ t Ha0 e LnOH’+ t H’ + 3 X. 

Since the aqueous solution should contain several 
ions (and small quantities of carbonate) we developed 
[2] a generalized RobinsonStokes equation which is 
applicable to mixture of ions. Therefore observed 
equivalent conductivities can be derived as: 

A 
{=‘I + B’&& 5 (S”)’ (1 - &,)hjl 

ohs = A& - 
1 + Bad1 

(1) 

with A& = (fCrIZrIhf)/3C; A’ = A/3 C; A= 30.32; 

B’ = 0.7852; I: ionic strength; Cr and Zi: concentra- 
tion and charge of ‘i’ ion; Sp and q, are eigen vectors 
and eigen values of the Onsager-Kim matrix. 

Taking into account hydrolysis, eqn. (1) is lineariz- 
ed and we fitted the experimental conductance data. 
The agreement between calculated and experimental 
data is 0.2%. 

We deduce the first hydrolysis constant (log KH z 
7) and values of the hydrated radius for 13 lantha- 
nides and we will consider the variations of these 
interesting parameters along the 4f series. Moreover 
the obtained limiting equivalent conductivities X, 
are 5% less than those which are generally tabulated. 
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